
J Glob Optim (2007) 37:541–555
DOI 10.1007/s10898-006-9061-9

O R I G I NA L PA P E R

Cross-entropic learning of a machine for the decision
in a partially observable universe

Frédéric Dambreville

Received: 19 June 2006 / Accepted: 22 June 2006 / Published online: 9 August 2006
© Springer Science+Business Media B.V. 2006

Abstract In this paper, we are interested in optimal decisions in a partially ob-
servable universe. Our approach is to directly approximate an optimal strategic tree
depending on the observation. This approximation is made by means of a parameter-
ized probabilistic law. A particular family of Hidden Markov Models (HMM), with
input and output, is considered as a model of policy. A method for optimizing the
parameters of these HMMs is proposed and applied. This optimization is based on
the cross-entropic (CE) principle for rare events simulation developed by Rubinstein.

Keywords Control · Markov Decision Process/Partially Observable Markov
Decision Process · Hierarchical Hidden Markov Models · Bayesian networks ·
Cross-entropy

Notations Some specific notations are used in this document.

• The variables d, y, x, and m are used for the decision, observation, world state, and
machine memory.

• The time t is starting from stage 1 to the maximal stage T. Variables with sub-
script outside this scope are synonymous to ∅. For example,

∏T
t=1 π(xt|xt−1)

means π(x1|∅)
∏T

t=2 π(xt|xt−1) , i.e. a Markov chain. A similar principle is used
for the level superscript λ in the definition of hierarchical Hidden Markov Models
(HHMM).

• The generic notation for a probability is P. However, the functions π and h denote
some specific components of the probability. π is a stochastic policy, i.e. a law of
the decision conditionally to the observation. h is an approximation of π by a
Hidden Markov Models (HMM) family. The hidden state of h is defined as the
machine memory m.

F. Dambreville (B)
Délégation Générale pour l’Armement, DGA/DET/CEP/ASC/GIP
16 Bis avenue Prieur de la Côte d’Or, F 94114, France
e-mail: jogo@fredericdambreville.com

542 J Glob Optim (2007) 37:541–555

1 Introduction

There are different degrees of difficulty in planning and control problems. In most
problems, the planner have to start from a given state and terminate in a required
final state. There are several transition rules, which condition the sequence of deci-
sion. For example, a robot may be required to move from room A, starting state,
to room B, final state; its decision could be go forward, turn right or turn left, and it
cannot cross a wall; these are the conditions over the decision. A first degree in the
difficulty is to find at least one solution for the planning. When the states are only
partially known or the resulting actions are not deterministic, the difficulty is quite
enhanced: the planner has to take into account the various observations. Now, the
problem becomes much more complex, when this planning is required to be optimal
or near-optimal. For example, find the shortest trajectory which moves the robot from
room A to room B. There are again different degrees in the difficulty, depending
on the problem to be deterministic or not, depending on the model of the future
observations. In the particular case of a Markovian problem with the full observation
hypothesis, the dynamic programming principle [2] could be efficiently applied; c.f.
Markov Decision Process theory (MDP). This solution has been extended to the case
of partial observation, but this solution is generally not practicable, owing to the huge
dimension of the variables [10, 4]; c.f. Partially Observable Markov Decision Process
(POMDP).

For such reason, different methods for approximating this problem has been
introduced. For example, reinforcement learning methods [11] are able to learn an
evaluation table of the decision conditionally to the known universe states and an
observation short range. In this case, the range of observation is indeed limited in
time, because of an exponential grow of the table to learn. Recent works [1] are
investigating the case of hierarchical RL, in order to go beyond this range limi-
tation. Whatever, these methods are generally based on an additivity hypothesis
about the reward. Another viewpoint is based on the direct learning of the pol-
icy [7]. Our approach is of this kind. It is particularly based on the cross-entropy
(CE) optimization algorithm developed by Rubinstein and Kroese [9]. This sim-
ulation method relies both on a probabilistic modeling of the policies (in this
paper, these models are Bayesian networks) and on an efficient and robust itera-
tive algorithm for optimizing the model parameters. More precisely, the policy will
be modeled by conditional probabilistic law, i.e. decisions depending on observations,
which are involving memories; typically hidden Markov models (HMM) are used.
Also is implemented a hierarchical modeling of the policies by means of hierarchical
hidden Markov models (HHMM).

The next section introduces some formalism and gives a quick description of the
optimal planning in partially observable universes. It is proposed a near-optimal plan-
ning method, based on the direct approximation of the optimal decision tree. The third
section introduces the family of HHMM being in use for approximating the decision
trees. The fourth section describes the method for optimizing the parameters of the
HHMM, in order to approximate the optimal decision tree for the POMDP. The CE
method is described and applied. The fifth section gives an example of application.
A comparison with a reinforcement learning method, the Q-learning, is made. The
paper is then concluded.

J Glob Optim (2007) 37:541–555 543

Fig. 1 The world

2 Decision in a partially observable universe

It is assumed that a subject is acting in a given world with a given purpose or mission.
Thus, the subject interacts with the world and perceives partial informations. The
goal is to optimize the accomplishment of the mission, which is characterized by its
reward. The forthcoming paragraphs are formalizing what is actually a world, what is
a mission reward, and how is defined an optimal policy for such a mission.

The world. The world is described by an hidden state x, which evolves with the
time t; in this paper, the time is discretized and increases from step 1 to step T.
More specifically, the variable xt contains an information which characterizes entirely
the world at time t. In the example of Sect. 5, the hidden state is characterized by
the locations of the target and patrols. The evolution of the hidden state is given by
the vector x = x1:T = x1, . . . , xt, . . . , xT . During the mission, the subject produces
decisions d = d1:T , which will impact the evolution of the world. In example 5, d is
the move of the patrols. The subject perceives partial observations from the world,
denoted y = y1:T , which are noisily derived from the hidden state. In the example, this
observation is an inaccurate estimate of the target location. As a conclusion, the world
is characterized by a law describing the hidden states and observations conditionally
to the decisions. This probabilistic law is denoted P:

The hidden state xt and observation yt are obtained from the law P(xt, yt|x1:t−1,
y1:t−1, d1:t−1) , which are conditioned by the past hidden states, observations and
decisions. It is assumed that dt is generated by the subject after receiving yt .

In this paper, the law P is quite general, and for example there is no Markovian
hypothesis (this hypothesis is required for a dynamic programming approach). Nev-
ertheless, it is assumed that P(xt, yt|x1:t−1, d1:t−1) may be sampled very quickly. The
law P(x, y|d) is shown in by Fig. 1 . In this figure, the out-going arrows are related to the
data produced by the world, i.e. observations, while incoming arrows are for the data
consumed by the world, i.e. the decisions. The variables are put in chronological order
from left to right: yt happens before dt since decision dt is produced after observing
yt . From now on, P(x, y|d) denotes the law of the world for the completed mission:

P(x, y|d) =
T∏

t=1

P(xt, yt|x1:t−1, y1:t−1, d1:t−1).

Reward and optimal planning. The mission is limited in time and is characterized
by a reward. This reward, denoted V(d, y, x), is a function of the trajectories d, y, x .
Typically, the function V could be used for computing the time needed for the mis-
sion accomplishment. The only hypothesis about V is that it is quickly computable. In
particular, the additivity of the reward1 with time, a requested hypothesis for many
classical methods, is not necessary.

1 Additive reward are of the form V(d, y, x) = ∑T
t=1 Vt(dt , yt , xt)

544 J Glob Optim (2007) 37:541–555

Fig. 2 The optimization process

The purpose is to construct an optimal decision tree y �→ (
dt(y1:t)|Tt=1

)
, depending

on the past observations, in order to maximize the mean reward:

Find do ∈ arg max
d

∑

y

∑

x

P
(

x, y
∣
∣
∣
(
dt(y1:t)|Tt=1

))
V

((
dt(y1:t)|Tt=1

)
, y, x

)
. (1)

This optimization process is shown in by Fig. 2. The double arrows are related to
the variables to be optimized. These arrows describe the information flow between
observations and decisions. The cells denoted ∞ are making decisions and transmitting
all the received and generated informations. This architecture illustrates that planning
with observation is a non-finite memory problem : the decision depends on the whole
past observations. Since the optimum for such a problem is generally intractable, it is
necessary to search for near-optimal solutions. The alternative method proposed now
relies on the optimal tuning of a probabilistic model of the policies.

Approximating the decision tree. In a program like (1) , the optimum do is a deter-
ministic object. In this precise case, do is a tree of decision, that is a function which
maps to a decision dt from any sequence of observation y1:t−1 . But it is more inter-
esting to have a probabilistic viewpoint, when approximating. Then the problem is
equivalent to finding π(d|y) , a probabilistic law of the decisions conditionally to the
past observations, which maximizes the mean reward:

V(π) =
∑

d

∑

y

∑

x

T∏

t=1

π(dt|d1:t−1, y1:t)P(x, y|d) V(d, y, x).

This new problem is still shown in Fig. 2, but the double arrows are now describing
a Bayesian network structure for the law π . By the way, there is not a great differ-
ence with the deterministic case for the optimum: when do is unique, the optimal law
πo ∈ arg maxπ V(π) is a Dirac on do . However, the probabilistic viewpoint is more
suitable to an approximation: it is simpler to handle probabilistic models than deter-
ministic decision trees, and the optimization is ensured to be continuous; moreover,
a natural approximation of πo is obtained by replacing the non-finite memories ∞ by
finite memories m (c.f. Fig. 3). Restricting the memory size of the policies is equivalent
to approximate the law π by a HMM. Then, the approach developed in this paper is
quite general and can be split up into two processes:

• Define a family of parameterized HMMs H.
• Optimize the parameters of the HMM in order to maximize the mean reward:

Find ho ∈ arg max
h∈H

V(h).

J Glob Optim (2007) 37:541–555 545

Fig. 3 Finite-memory approximation

As will be seen later, it is easy to tune a HMM optimally by the CE method of
Rubinstein and Kroese [9]. But first, it is discussed in the next section about the
choice of the family H.

3 Models

General points. The choice of the family of policy models, H, will profoundly impact
the efficiency of the approximation. In particular, the models will be characterized
by the memory size and the internal structure of the HMMs (e.g. is it hierarchical
or not?). Both characteristics will act upon the convergence, as will be seen in the
experiments. In the most simple case, the HMMs of H contain no structure and are
distinguished by their memory size only. Example of simple HMM:

Let M be indeed a finite set of states, describing the memory capacity of our
models. Then, the memory of the HMM at time t is mt ∈ M, a variable valued
within M. A HMM h ∈ H is thus typically defined by:

h(d|y) =
∑

m∈MT

h(d, m|y),

h(d, m|y) =
T∏

t=1

(
hd(dt|mt)hm(mt|yt, mt−1)

)
,

where the conditional law hd and hm are time invariant.
But subsequently will be considered the impact of both the memory and HMM
structures. For this purpose a specific family of hierarchical HHM will be intro-
duced and studied. HHMM are indeed a particular case of HMM, implementing
strong intern structures.

Hierarchical HMM. Hierarchical models are inspired from biology: to solve a
complex problem, factorize it and make decisions in a hierarchical fashion. Low-hier-
archies manipulate low-level informations and actions, making short-term decisions.
High-hierarchies manipulate high-level informations and actions (uncertainty is less),
making long-term decisions. HHMM are such kind of models. A HHMM is a HMM,
which output is either a HMM or an actual output. A HHMM could also be consid-
ered as a hierarchy of stochastic processes calling sub-processes. From this common
definition, HHMM are complex structures, which are difficult to formalize and to
computerize. Nevertheless, these models have been introduced and applied for hand-
writing recognition [5], as well for modeling complex worlds in control applications

546 J Glob Optim (2007) 37:541–555

Fig. 4 Model of a controlled HHMM

[12]. A fundamental contribution has been made by Murphy and Paskin [8], which
have shown how HHMM could be interpreted as a particular 2-dimension dynamic
Bayesian network (DBN). Now, DBN are easily formalized, manipulated, and com-
puterized. The DBN could be considered as HMM with complex intern structures.
From the work of Murphy and Paskin, it could be shown that a hierarchical HMM
(with input and output) could be interpreted by a DBN as described in Fig. 4, with
discrete or semi-continuous states. It appears, that there is a up and down flow of the
information between the hierarchical levels in addition to the usual temporal flow (the
Markovian property). It is important to note that Boolean informations are necessary
for implementing the hierarchy. These Boolean are needed for controlling the infor-
mation flows between processes and subprocesses. The next paragraph introduces the
customized model of HHMM, which has been considered in this work. It is simplifi-
cation of the general HHMM model, and it allows a more simple implementation.

Implemented model. The implemented model family H is composed by HHMM
with � hierarchical levels. Each level λ ∈ [[1, �]] is associated to a finite memory set
Mλ (the memory size may change with the hierarchy). The exchange of information
between the levels is characterized by the DBN shown in Fig. 5. Notice that each
memory cell receives an information from the current upper-level cell and the pre-
vious lower-level cell. As a consequence, the hierarchical and temporal information
exchanges are guaranteed. In a more formal way, the HHMM h ∈ H are of the form:

h(d|y) =
∑

m∈M�T

h(d, m|y),

h(d, m|y) =
T∏

t=1

h0(dt|m1
t)h

1(m1
t |yt, m2

t)

�∏

λ=2

hλ(mλ
t |mλ−1

t−1 , mλ+1
t),

where mλ ∈ Mλ is the variable for the memory at level λ. It is noteworthy that this
model is equivalent to a simple HMM when � = 2. And when � = 1, the law h

J Glob Optim (2007) 37:541–555 547

Fig. 5 HHMM model for the planning

just maps the immediate observation to decisions, without any memory of the past
observations.

For any h ∈ H, define P[h] the complete probabilistic law of the system world/
subject:

P[h](d, y, x, m) = P(y, x|d)h(d, m|y)

Then the issue is to find the near-optimal strategy ho ∈ H such that:

ho ∈ arg max
h∈H

∑

d,y,x,m

P[h](d, y, x, m)V(d, y, x).

A solution to this problem, by means of the CE method, is proposed in the next
section.

4 Cross-entropic optimization of h

The reader interested in CE methods should refer to the tutorial [3] and the book [9]
on the CE method. The CE algorithms were first dedicated to estimating the prob-
ability of rare events. A slight change of the basic algorithm made it also good for
optimization. In their new article, Homem-de-Mello and Rubinstein [6] have given
some results about the global convergence. In order to ensure such convergence, some
refinements are introduced particularly about the selective rate.

This presentation is restricted to the basic CE method. The new improvements of
the CE algorithm proposed in [6] have not been implemented, but the algorithm has
been seen to work properly. For this reason, this paper does not deal with the choice
of the selective rate.

4.1 General cross entropy algorithm for the optimization

The CE algorithm repeats until convergence the three successive phases as follows:

1. Generate samples of random data according to a parameterized random
mechanism.

2. Select the best samples according to a reward criterion.
3. Update the parameters of the random mechanism, on the basis of the selected

samples.

548 J Glob Optim (2007) 37:541–555

In the particular case of CE, the update in phase 3 is obtained by minimizing the
Kullback–Leibler distance, or CE, between the updated random mechanism and the
selected samples. The next paragraphs describe on a theoretical example how such
method can be used in an optimization problem.

Formalism. Let be given a function x �→ f (x); this function is easily computable.
The value f (x) has to be maximized, by optimizing the choice of x ∈ X. The function
f will be the reward criterion.

Now let be given a family of probabilistic laws, Pσ |σ∈� , applying on the variable x.
The family P is the parameterized random mechanism. The variable x is the random
data.

Let ρ ∈]0, 1[be a selective rate. The CE algorithm for (x, f , P) follows the synopsis:

1. Initialize σ ∈ �.
2. Generate N samples xn according to Pσ .
3. Select the ρN best samples according to the reward criterion f .
4. Update σ as a minimizer of the CE with the selected samples, i.e.:

Find σ ∈ � which maximizes
∑

n selected

ln Pσ (xn).

5. Repeat from step 2 until convergence.

This algorithm requires f to be easily computable and the sampling of Pσ to be fast.
Interpretation. The CE algorithm tightens the law Pσ around the maximizer of

f . Then, when the probabilistic family P is well suited to the maximization of f , it
becomes equivalent to find a maximizer for f or to optimize the parameter σ by
means of the CE algorithm. The problem is to find a good family . . . Another issue is
the criterion for deciding the convergence. Some answers are given in [6]. Now, it is
outside the scope of this paper to investigate these questions precisely. Our criterion
was to stop after a given threshold of successive unsuccessful tries and this very simple
method has worked fine on our problem.

4.2 Application

Optimizing h ∈ H means tuning the parameter h in order to tighten the probability
P[h] around the optimal values for V . This is exactly solved by the CE optimization
method. However, it is required that the reward function V is easily computable.
Typically, the definition of V may be recursive, e.g.:

V(d, y, x) = VT , Vt = vt(dt, yt, xt, Vt−1) and V0 = 0.

Let the selective rate ρ be a positive number such that ρ < 1 . The CE method for
optimizing h follows the synopsis:

1. Initialize h. For example a flat h.
2. Build N samples θn = (dn, yn, xn, mn) according to the law P[h].
3. Choose the ρN best samples θn according to the reward V(dn, yn, xn). Denote S

the set of the selected samples.
4. Update h as the minimizer of the CE with the selected samples, i.e.:

Find h ∈ H which maximizes
∑

n∈S

ln P[h](θn). (2)

J Glob Optim (2007) 37:541–555 549

5. Reiterate from step 2 until convergence.

For our HHMM model, the maximization (2) is solved by:

h0(A|B) =
card

{
n ∈ S , t / A = dn

t and B = m1,n
t

}

card
{

n ∈ S , t / B = m1,n
t

} ,

h1(A|B, C) =
card

{
n ∈ S , t / A = m1,n

t , B = yn
t and C = m2,n

t

}

card
{

n ∈ S , t / B = yn
t and C = m2,n

t

}

and for 2 ≤ λ ≤ �:

hλ(A|B, C) =
card

{
n ∈ S , t / A = mλ,n

t , B = mλ−1,n
t−1 and C = mλ+1,n

t

}

card
{

n ∈ S , t / B = mλ−1,n
t−1 and C = mλ+1,n

t

} .

The next section presents an example of implementation of the algorithm described
in Sect. 4.2.

5 Implementation

The algorithm has been applied to a simulated target detection problem.

5.1 Problem setting

A target R is moving in a lattice of 20 × 20 cells, i.e. [[0, 19]]2. R is tracked by two
mobiles, B and C, controlled by the subject. The coordinate of R, B and C at time t are
denoted (itR, jtR), (itB, jtB) and (itC, jtC). B and C have a very limited information about
the target position, and are maneuvering much slower as follows:

• A move for B (respectively C) is either: turn left, turn right, go forward, no move.
Consequently, there are 4 × 4 = 16 possible actions for the subject. These moves
cannot be combined in a single turn. No diagonal forward: a mobile is either
directed up, right, down or left.

• The mobiles are initially positioned in the down corners, i.e. i1B = 0, j1B = 19 and
i1C = 19, j1C = 19. The mobile are initially directed downward.

• B (respectively C) observes whether the target relative position is forward or not.
More precisely:
(1) when B is directed upward, it knows whether jR < jB or not,
(2) when B is directed right, it knows whether iR > iB or not,
(3) when B is directed downward, it knows whether jR > jB or not,
(4) when B is directed left, it knows whether iR < iB or not,

• B (respectively C) knows whether its distance with the target is less than 3, i.e.
d∞(B, R) < 3, or not. The distance d∞ is defined by:

d∞(B, R) = max{|iB − iR| , |jB − jR|}.
At last, there are 24 = 16 possible observations for the subject.

550 J Glob Optim (2007) 37:541–555

Several test cases have been considered. In case 1, the target R does not move. In
any other case, the target R chooses stochastically its next position in its neighbor-
hood. Any move is possible (up/down, left/right, diagonals, no move). The probability
to choose a new position is proportional to the sum of the squared distance from the
mobiles:

P(Rt+1|Rt) = 0 if |it+1
R − itR| > 1

or |jt+1
R − jtR| > 1,

P(Rt+1|Rt) ∝ (it+1
R − itB)2 + (jt+1

R − jtB)2

+(it+1
R − itC)2 + (jt+1

R − jtC)2 else.

This definition was intended to favor escape moves: more great is a distance, more
probable is the move. But in such summation, a short distance will be neglected com-
pared to a long distance. It is implied that a distant mobile will hide a nearby mobile.
This “deluding” property will induce actually two different kinds of strategy, within
the learned machines.

The objective of the subject is to maintain the target sufficiently closed to at least
one mobile (in this example, the distance between the target and a mobile is required
to be not more than 3). More precisely, the reward function, V, is just counting the
number of such “encounter:”

V0 = 0, Vt = Vt−1 + 1 if d∞(Bt, Rt) ≤ 3 or d∞(Ct, Rt) ≤ 3, Vt = Vt−1 else.

The total number of turns is T = 100.

5.2 Results

Generality. Like many stochastic algorithms, this algorithm needs some time for con-
vergence. For the considered example, about 2 h were needed for convergence (on
a 2 GHz PC); the selective rate was ρ = 0.5. This speed depends on the size of the
HHMM model and on the convergence criterion. A weak and a strong criterion
are used for deciding the convergence. Within the weak criterion, the algorithm is
terminated after 100 successive unsuccessful tries. Within the strong criterion, the
algorithm is terminated after 500 successive unsuccessful tries. Of course, the strong
criterion computes a (slightly) better optimum than the weak criterion, but it needs
time. Because of the many tested examples, the weak criterion has been the most used
in particular for the big models. For the same HHMM model, the computed optimal
values do not depend on the algorithmic instance (small variations result however
from the stochastic nature of the algorithm).

In the sequel, mean rewards are rounded to the nearest integer, or are expressed
as a percentage of the optimum. Thus, the presentation is made clearer. And owing
to the small variations of this stochastic algorithm, more precision turns out to be
irrelevant.

Case 1 (R does not move) This example has been considered in order to test the
algorithm. The position of the target is fixed in the center of the square space, i.e.
i1R = j1R = 10. It is recalled that the mobiles are initially directed downward. Then, the
optimal strategy is known and its value is 85 : the time needed to reach the target is
15 , and no further move is needed. The learned ho approximates the reward 84 . The
convergence is good.

J Glob Optim (2007) 37:541–555 551

Case 2 (R is moving but the observation y is hidden) Initially, R is located within the
20 × 10 upper cells of the lattice (i.e. [[0, 19]] × [[0, 9]]), accordingly to a uniform
probabilistic law. The computed optimal means reward is about 32. In this case, the
mobiles tend to move towards the upper corners.

Case 3 (R is moving and y is observed) Again, R1 is located uniformly within the
20 × 10 upper cells of the lattice. The computed optimal means reward is about 69.
This reward has been obtained from a large HHMM model (� = 2 with 256 states per
level, i.e. card(Mλ) = 256) and with the strong criterion. However, somewhat smaller
models should work as well.

Specific computations are now presented, depending on the number of levels �

and the number of states per levels. For each case, the weak criterion has been used.
The rewards are now expressed as percentage of the computed optimum.

Subcase � = 1 . For such model, the action dt is constructed only from the imme-
diate last observation yt. The model does not keep any memory of the past obser-
vations. Then, only 16 states are sufficient to describe the hidden variable m1

t , i.e.
card(M1) = 16. The resulting reward is 78% of the optimum.

Subcase � = 2 . This model is equivalent to a HMM and it is assumed that
card(M1) = card(M2). The following table gives the computed reward for several
choices of the memory size:

Card(Mλ) 16 32 64 256
Reward % 94 96 97 97

It is noteworthy that the memory of the past observations allows better strategies than
the only last observation (case � = 1) . Indeed, the reward jumps from 78 to 97%.

Subcases � > 2. A comparison of graduated hierarchic models, 1 ≤ � ≤ 4, has
been made. The first level contained 16 possible states, and the higher levels were
restricted to two states:

Hierarchic grade � = 1 � = 2 � = 3 � = 4
Card(Mλ)|�

λ=1 16 16, 2 16, 2, 2 16, 2, 2, 2

The test has been accomplished according to the weak criterion:

Hierarchic grade � = 1 � = 2 � = 3 � = 4
Reward (weak %) 78 85 81 94

and the strong criterion:

Hierarchic grade � = 1 � = 2 � = 3 � = 4
Reward (strong %) 80 88 93 96

It seems that a high-hierarchic grade (i.e. more structure) makes the convergence
difficult. This is particularly the case here for the grade � = 3 , which failed under the
weak criterion at only 81%. However, the algorithm works again when improving the
convergence criterion.

It is interesting to make a comparison with the subcase � = 2 where card(M1) =
card(M2) = 16. Under the weak criterion, the result for this HHMM was 94% as for
the grade � = 4. However, the dimension of the law is quite different for the two
models:

552 J Glob Optim (2007) 37:541–555

Fig. 6 Near-optimal control sequence

• 15 × 16 + 15 × 16 × 16 + 15 × 16 = 4, 320 for the 2-level HHMM,
• 15 × 16 + 15 × 16 × 2 + 1 × 16 × 2 + 1 × 2 × 2 + 1 × 2 = 758 for the 4-level HHMM.

This dimension is a rough characterization of the complexity of the model. It seems
clear on these examples that the highly hierarchized models are more efficient than
the weakly hierarchized models. And the problem considered here is quite simple.
On complex problems, hierarchical models may be pre-eminent.

Global behavior of the algorithm. The convergence speed is low at the beginning.
After this initial stage, it improves greatly until it reaches a new “waiting” stage. This
alternation of low speed and great speed stages have been noticed several times.

The near optimal policy. It is now discussed about the behavior of the best found
policy. This policy has reach the mean reward 69. The mobiles strategy results in a
tracking of the target. The Fig. 6 shows a short sequence of escape/tracking of the
target. It has been noticed two quite distinct behaviors, among the many runs of the
policy:

• The two mobiles may both cooperate on tracking the target.
• When the target is near a border, one mobile may stay along the opposite border

while the other mobile may perform the tracking. This strategy seems strange at
first sight. But it is recalled that the moving rule of the target tends to neglect a
nearby mobile compared to a distant mobile. In this strategy, the first mobile is
just annihilating the ability of the target to escape from the tracking of the second
mobile.

5.3 Comparison with the Q-learning

The Q-learning is a reinforcement learning method, which is based on the computa-
tion of a table evaluating the decision conditionally to the known information. The
known information is typically the state of the world if it is known, or partial states and
observations. Since the known information increases exponentially with the observa-
tion range, the test will only implement a Q-learning based on the immediate past
observation. Now, let us recall some theoretical grounds about the Q-learning.

J Glob Optim (2007) 37:541–555 553

Theory. A founding reference about reinforcement learning is the well known
book of Sutton and Barto [11], which is available on the Internet. This paragraph will
not enter deeply into the subject, and is limited to a simple description of the Q-learn-
ing. Moreover, we will make the hypothesis of infinite horizon (that is T = ∞) with a
weak discounting of the reward γ = 0.99, so as to implement the algorithm in its most
classical form. Tests however have also been made with a finite horizon but have not
achieved a good convergence for the considered algorithm.

The learning relies on the following hypotheses:

• At each step t, the subject has a (partial) knowledge s of the state of the world,
and chooses an action a.

• Let Vt+1 be the cumulated reward from step t + 1 to step ∞. Assume a state st and
action at at step t. Then Vt = R(st, at) + γ Vt+1 , i.e. an instantaneous reward R is
obtained and cumulated to the discounted future reward.

The question is: being given a current state s, what is the best action a to be done? The
answer is simple, if we are able to predict the future and evaluate the expected cumu-
lated reward Q(s, a) for any a: the best action is ao ∈ arg maxa Q(s, a) . The following
algorithm could be used for learning the table Q (taken from [11]):

• Initialize Q(s, a) arbitrary
• (Repeat for each episode: [finite-horizon case])

(1) Initialize s
(2) Repeat for each step (of the episode):

(a) With probability 1 − ε choose a ∈ arg maxa Q(s, a) ; otherwise chose a
randomly

(b) Take action a, receive reward R(s, a) and observe the new state s′
(c) Set Q(s, a) := Q(s, a) + α

(
R(s, a) + γ maxa′ Q(s′, a′) − Q(s, a)

)

(d) Set s := s′
(3) (until s is terminal)

where α controls the convergence speed and ε the innovation.
In our implementation, s = (yt, itB, jtB, itC, jtC, directions), a = dt, α = 0.1, ε = 1/ ln t and
the instantaneous reward R is compliant with the experiment definition of previous
section. Since s contains the last observation plus the known part of the world state,
this experiment should be equivalent to [case 3/subcase � = 1] considered previously.
The computer memory needed to store the table Q was approximately 2 giga-byte:
we are around the limits of the computer. In particular, it is rather uneasy to involve
a greater observation range without some approximations.

Results. The algorithm has been stopped after 1011 iterations, but 1010 seemed
sufficient. It took several hours, but the algorithm has not been optimized. In order to
make the comparison possible with our method, the Q-strategies have been evaluated
by a non-discounted cumulation of the reward on 100-step-wide windows. Moreover,
these evaluations have been made:

• from the initial stage of the simulation, so as to conform to previous section,
• after many cycles, so as to simulate an infinite horizon.

The following table makes a comparison between the Q-strategies and the model
based strategies with � = 1.

554 J Glob Optim (2007) 37:541–555

Worse % Mean % Best %

Q-policy/stage 0 0 40 112
Q-policy/∞-horizon 0 51 145
Model based � = 1 44 78 105

It is first noticed that the policy obtained by the Q-learning is less regulated than the
model based policy. Moreover, although it may be quite good to track a target when
the encounter has been initialized (best is 145%), it is rather bad at initializing the
encounter (mean for initial stage is 40%) or when the tracking is lost (worst is 0%).
At last, the mean evaluation at infinite horizon is 51%, which is even smaller than the
model-based policy working from the initial stage.

On this example, and for this simple Q-learning implementation, the comparison
is favorable to the model-based policy. Moreover, model-based policies are able to
manage more observation range. Now, this planning example has been constructed
so as to make difficult the management of the state variables (the dimension is huge)
and observations (the observations are poor and have to be combined). For such a
problem, a more dedicated RL-method should be chosen.

6 Conclusion

In this paper, we proposed a general method for approximating the optimal planning
in a partially observable world. The HHMM families have been used for approximat-
ing the optimal decision tree, and the approximation has been optimized by means of
the CE method.

At this time, the method has been applied to a strictly discrete-state problem and
has been seen to work properly. This algorithm has been compared favorably with
a Q-learning implementation of the considered problem: it is able to manage more
observation range, and the optimized policy is more regulated. An interesting point
is that the optimized policy has discovered two quite different global strategies and
is able to choose between them: make the mobiles both cooperate on tracking or
require one mobile for deluding the target.

The results are promising. However, the observation and action spaces are limited
to a few number of states. And what happens if the hidden space becomes much more
intricate? There are several possible answers to such difficulties:

First, the CE principle could be applied for optimizing continuous laws. It is thus
certainly possible to consider semi-continuous models, which will be more realistic for
a planning policy. Second, many refinements are foreseeable about the structure of the
models. Hierarchic models for observation, decision, and memory should be improved
in order to locally factorize intricate problems. This research is just preliminary and
future works should investigate these questions.

References

1. Bakker, B., Schmidhuber J.: Hierarchical reinforcement learning based on subgoal discovery
and subpolicy specialization. In Proceedings of the 8th Conference on Intelligent Autonomous
Systems, pp. 438–445. Amsterdam, The Netherlands (2004)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, New Jersey (1957)

J Glob Optim (2007) 37:541–555 555

3. de Boer, P.-T., Kroesse, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method,
http://www.cs.utwente.nl/∼ptdeboer/ce/

4. Cassandra, A.R.: Exact and approximate algorithms for partially observable Markov decision
processes. PhD thesis, Brown University, Rhode Island, Providence (1998)

5. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: Analysis and Application.
Machine Learning 32(1), 41–62 (1998)

6. Homem-de-Mello, T., Rubinstein, R.Y.: Rare event estimation for static models via cross-entropy
and importance sampling. http://users.iems.nwu.edu/∼tito/list.htm

7. Meuleau, N., Peshkin, L., Kim, K-E., Kaelbling, L.P.: Learning finite-state controllers for partially
observable environments. In Proc. of UAI-99, pp. 427–436. Stockholm (1999)

8. Murphy, K., Paskin, M.: Linear time inference in hierarchical HMMs. In: Proceedings of Neural
Information Processing Systems, Vancouver, Canada (2001)

9. Rubinstein, R., Kroese, D. P.: The Cross-Entropy method. An unified approach to Combinatorial
Optimization, Monte-Carlo Simulation, and Machine Learning. Information Science & Statistics,
Springer Berlin (2004)

10. Sondik, E. J.: The optimal control of partially observable markov processes. PhD thesis, Stanford
University, Stanford, California (1971)

11. Sutton, R.J., Barto, A.G.: Reinforcement Learning, MIT Press, Cambridge, MA (2000)
12. Theocharous, G: Hierarchical learning and planning in partially observable markov decision

processes. PhD thesis, Michigan State University (2002)

